Modeling and predicting of different stock markets with GARCH model

نویسنده

  • Lars Forsberg
چکیده

This paper is mainly talking about several volatility models and its ability to predict and capture the distinctive characteristics of conditional variance about the empirical financial data. In my paper, I choose basic GARCH model and two important models of the GARCH family which are E-GARCH model and GJR-GARCH model to estimate. At the same time, in order to acquire the forecasting performance, I consider to use two different distributions on error term: normal distribution and student-t distribution. Finally, for each set of empirical stock price, I could get the best model to predict the conditional variance of the stock return based on comparing the Root Mean Square Error (RMSE)’s values of different models. Here, I select several main global stock markets indexes: NASDAQ’s daily index (America), Standard and Poor’s 500 daily index (America), FTSE100 daily index (UK), HANG SENG daily index (Hong Kong) and NIKKEI daily index (Japan).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange

This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...

متن کامل

Modelling and Investigating the Differences and Similarities in the Volatility of the Stocks Return in Tehran Stock Exchange Using the Hybrid Model PANEL-GARCH

Efficient financial markets with high degree of transparency do not substantiate the hypothesis that there are differences in the volatility of return. Generally, there are factors rejecting any perfect similarity in the volatility of return in the emerging stock markets, as previous studies in Iran have confirmed the complete difference. On the other hand, the hybrid model PANEL-GARCH has the ...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012